The Oxford Nanopore team has been speaking recently about their use of our BluePippin automated size selection system for optimizing the read length obtained from nanopore sequencers. For anyone interested in the Oxford platforms who hasn’t seen this information, here’s a quick recap.
As we’ve seen with PacBio, the other long-read platform, single-molecule sequencers tend to produce reads as long as the fragments fed to them. Naturally, users interested in maximizing the read lengths of these systems want to feed them only the longest possible fragments. The simplest and most effective way to do that is what we call high-pass sizing, or selecting all DNA fragments longer than a certain size threshold during the sample prep process.
For the MinIon and PromethIon sequencers from Oxford Nanopore, the company recommends BluePippin sizing for various protocols. This library prep workflow for both sequencing systems uses BluePippin to eliminate shorter fragments; one example of outcomes shows a whopping 255 Kb read from an E. coli experiment. There’s a similar rationale for recommending BluePippin for de novo whole genome assembly with the MinIon system. And this protocol demonstrates how automated sizing fits into a sequence-capture approach for library prep prior to nanopore sequencing.
We’re delighted that BluePippin is showing such utility for nanopore sequencing. If you’re an Oxford Nanopore customer who doesn’t already have access to one of these instruments, contact us to learn how BluePippin can make a difference in your pipeline.